Non-intrusive Level Switch (Mode C) Software 3.0.11

Manual Book(Ver: 4.0)

ⓒ Shaan01000373 号

Enterprise Standards: Q/SK 001-2020

🖾 13L169-61

SHAANXI SHENGKE ELECTRONIC

TECHNOLOGY CO.,Ltd

1.	Instrument Warranty and Service Scope	1
2.	Opening Inspection and Cautions	2
	2.1 Open Box Audit	2
	2. 2 Attentions	2
3.	Storage and Transportation	3
	3. 1 Storage Conditions	3
	3. 2 Transport the Product to the Work Place	3
4.	Product Introduction	4
	4.1 Product Overview	4
	4. 2 Technical Parameters	4
	4. 3 Application Scope	5
	4. 3. 1 Container under Test	5
	4. 3. 2 Medium Temperature Requirements	6
	4. 3. 3 Instrument Environment Temperature	6
	4. 3. 4 Explosion-Proof, Anti-Corrosion and Protection Grade	6
5.	Level Switch Dimension	7
	5.1 Level Switch Mainframe Dimension	7
	5. 2 Sensor Probe Dimension	7
6.	Instrument Installation	8
	6. 1 Instrument Installation	8
	$6.\ 1.\ 1$ Schematic diagram for assembly of level switch	8
		8
	$6.\ 1.\ 2$ Schematic diagram of pipeline connection of level switch	9
	$6.\ 1.\ 3$ Detailed List of Level Switching Equipment	. 11
7.	Instrument Installation and Debugging	12
	7.1 Preparations Before Installation	12
	7.2 Probe Installation Position Selection	12
	7.3 Probe Installation and Debugging Procedures	13
	$7.\ 3.\ 1$ Installation and Debugging of Measuring Probe	13
8.	Instrument Debugging Parameter Description	. 16
	8.1 Parameter setting man-machine interface	16
	8.2 Main Screen Description	18
	8.3 Instrument operation	20
	$8.\ 3.\ 1$ Working Characteristics of Mode C	20
	8. 3. 2 Main Parameters Setting	20
	8.3.3 Main Parameters Descriptions (the other paras no shown on this form please ignore them)	. 21
9.	Electrical connection	23
	$9.\ 1$ Level Switching Power Supply	. 23
	9.2 Terminal of Level Switch	24
10.	Appendix 1	26

1. Instrument Warranty and Service Scope

From the date of shipment, the instrument mainframe is guaranteed for one year, and the instrument repair and maintenance are guaranteed for half a year. This guarantee is limited to the instrument users of the original factory purchaser or designated distributor and is not applicable to any instrument users who use the instrument incorrectly for human reasons, modify, neglect or cause damage by accident or abnormal use.

Free maintenance is provided for faulty instruments returned within the scope of warranty. To obtain the warranty service, please contact the after-sales service department and attach the fault description. With the permission of the company, the instrument will be sent to the after-sales service department.

Report errors

If the instrument has passed the warranty period or is confirmed that the failure of the instrument is caused by misuse, modification, negligence, accident and abnormal use, the maintenance cost budget will be provided according to the relevant maintenance fee standards and will be maintained after approval. After the instrument is repaired, it will be sent back to the customer, who will pay for the maintenance and transportation. (Attached: Warranty Policy)

2. **Opening Inspection and Cautions**

2.1 Open Box Audit

- Manual book
- Qualification Certificate
- Packing list
- Mainframe
- Check the name, model, etc. on the nameplate
- Check whether the shell is in good condition and observe whether the window glass cover is broken.
- Check random items according packing list

Check the correctness and completeness of the instrument specifications, models and accessories according to the instrument packing list. If you have any questions, please contact the customer service center in time for the change.

2.2 Attentions

- Please read the instruction before installing the instrument.
- Modifications due to product upgrades are subject to change without prior notice. Please refer to the actual product.

3. Storage and Transportation

3.1 Storage Conditions

- $-40 \sim +60$ °CStorage Temperature: $40 \sim +60$ Temperature
- Use original packaging

3. 2 Transport the Product to the Work Place

- Transport level switch to work place or process connection with original packaging
- During transportation and storage, collision, moisture and chemical erosion should be prevented.

4. **Product Introduction**

4.1 Product Overview

Non-intrusive level switch (hereinafter referred to as level switch) is a new type of liquid level monitoring and alarming device. It is mainly used for monitoring tank level, alarming the upper and lower limits or monitoring the existence of medium in pipeline (dry state protection). It can be used for liquid level process control in pharmaceutical, petroleum, chemical, power, food and other industries.

The liquid level switch is flameproof and can be directly used in flammable and explosive occasions. It is widely used in high-pressure and atmospheric tank alarm system in medicine, petroleum, chemical industry, power, food and other industries. The product is installed by sticking type, without moving the tank and fire. It is safe and reliable in use, with high sensitivity, and its comprehensive performance has advanced domestic and international level, which provides a strong guarantee for safe production.

Output signal	relay output (contact is passive node)		
Relay capacity	DC 30V 6A, AC 250V 6A		
Repeatability error	±3cm		
Measurable wall			
thickness			
Power	3 W		
Communication	RS-485、Infrared、Modbus		
Main engine			
operating ambient	-40°C ~+70°C		
temperature			

4.2 Technical Parameters

Environmental	(15%~100%) RH		
humidity			
Power Supply	DC 24V		
Electrical			
Interface	M20 $ imes$ 1.5		
Specification			
Material	Cast Aluminum		
Shell Protection	IP67		
Level			
Explosion-proof	Evall CT6		
mark	EXUIT CIO		
Probe Shell	Cast Aluminum, Stainless Steel		
Material			
The probe is			
operated at ambient	- 50 C to + 100 C (normal temperature type)		
temperature			
Host Weight	2 KG		
Main engine outline	150 mm long 110 mm wide and 140 mm high		
size	158 mm long, 112 mm wide and 148 mm high		
Main engine base	М5		
hole diameter			

4.3 Application Scope

4. 3. 1 Container under Test

The vessel wall at the installation of sonar probe should be made of hard material which can transmit signals well. For example: carbon steel, stainless steel, various hard metals, fiberglass reinforced plastics, epoxy resin, hard plastics, ceramics, glass, hard rubber and other materials or other composite materials. The inner and outer surfaces of the vessel wall should be flat. If the vessel wall is made of multi-layer materials, the layers should be in close contact with each other without air bubbles or gas sandwiches. For example: vulcanized hard rubber lining, epoxy resin lining, stainless steel lining, titanium lining.

4.3.2 Medium Temperature Requirements

The permissible temperature range of the probe is $-50 \sim 100$ C (normal temperature type) and 60 ~ 200 C (high temperature type). Because the probe is close to the wall of the container, the temperature of the probe is similar to that of the wall of the container, so the temperature of the measured medium is generally required to be within - 50 ~ 200 C.

4.3.3 Instrument Environment Temperature

The ambient temperature range of the main engine of the liquid level switch is $-40 \sim 80$ C. In the northern area, it is recommended to use instrument protection box. In the areas with strong direct sunlight, it is suggested to install the instrument in a shady place or use a sunshade, which can avoid the excessive temperature in the instrument caused by the sun exposure, and also can provide good ventilation and heat dissipation.

4.3.4 Explosion-Proof, Anti-Corrosion and Protection Grade

The external level switch adopts the explosion-proof and anti-corrosion structure of aluminum alloy casting seal, epoxy spraying on the surface. It is suitable for harsh environment with explosive mixture gas, medium concentration corrosive gas and 0-95% humidity range.

Non-intrusive level switch Explosion-proof grade: ExdIICT6.

Anti-corrosion grade: WF1 Outdoor intermediate corrosion protection

Protection grade: IP65、IP67

5. Level Switch Dimension

140 158 第二日 1158 1158 1100 1158<

5.1 Level Switch Mainframe Dimension

Mainframe (2 holes) Figure 1 Dimension of mainframe (unit: mm)

5.2 Sensor Probe Dimension

 $Figure \ 2 \quad Dimension \ of \ probe \ (unit: \ mm)$

6. Instrument Installation

6.1 Instrument Installation

$6.\ 1.\ 1$ Schematic diagram for assembly of level switch

3-1 Level Switch for Spherical Tank

3-2 Level Switch for Vertical Tank

$6.\ 1.\ 2$ Schematic diagram of pipeline connection of level switch

$6.\ 1.\ 3\,\text{Detailed}$ List of Level Switching Equipment

No.	Name	Specifica tion	Quantity	Graphical Indication	Remarks
1	Storage tanks (wall)				
2 Fixed seat			1		
3	Explosion-proof Flexible Tube		1		User-prov
4	Gasket		1		laea
5	Direct threading boxes		Some		Usen rheet
6	Galvanized pipes		Some		User-prov
7	Bend-through threading boxes		Some		Ided
8	Signal Cable Optional		optional		
9	Stainless steel plug	M20*1.5	1	D	
10	Sealing gasket	non-porou s	1	Е	
11	Converter connector	M20*1.5	3	А	optional
12	Gaskets		8	С	
13	Seal gasket	1 hole	1	В	
14	Switch host	SK-WK	1		
15	Sealing gasket	2 Holes	2	F	
16	Explosion-proof flexible tubes		3		User-prov
17	2 inch riser		1		Idea
18	Inner hexagonal scre	M5	4		
19	Nuts	M8	2		
20	Switch Bracket		1		
21	U-Card		1		
22	24V Power Supply		1		
23	Alarm lights		1		User-prov
24	Main Control Room				ided
21	(Control System)				ideu
25	Pump body/valve				
A	Locking Joint	M16			Installat
В	Bellows	ф13			ion and
C	Fast socket	M20			Use of Bellows

7. Instrument Installation and Debugging

7.1 Preparations Before Installation

- Before debugging, it is necessary to ensure that the liquid level in the tank is higher than 1 m and the liquid level meets the calibration conditions of diameter.
- Understand the internal structure and pipeline arrangement of the tank, and obtain the information of tank diameter, measurement range, wall thickness, etc.
- Tools: slotted screwdriver (3*75mm), wire stripper (7mm^2) , handmade knife, adjustable wrench (≥ 10 inches), inner hexagon spanner (M5), DC 24V power supply.
- After the tool is ready, the product is checked and the packing list is checked to determine whether the material is complete.

7.2 Probe Installation Position Selection

According to the equipment diagram of storage tank, the optimum installation point of probe is selected.

• Basic Principles of Probe Installation

The probe pointing is completely perpendicular to the liquid level, and the calibration probe pointing is parallel to the liquid level.

The probe is installed as far away as possible from the inlet and outlet and the weld.

The probe points to the front without any obstruction such as pipeline.

Selection of Probe Installation Location for Different Tank Types
Horizontal Tanks: The measuring probe must be installed at the bottom of the tank (the inclination of the probe will lead to the increase of blind area and instability of measurement); the calibration probe should be installed at the horizontal diameter position of 1/2 tank height.

Vertical Tanks: The measuring probe is mounted on the bottom plate and is as far away from the tank wall as possible, at least 10 cm away from the edge of the tank wall. The calibration probe can be installed in the horizontal diameter position of the tank body above 1 m in

height.

Sphere Tanks: The probe can be installed on the bottom manhole flange. If there is more precipitation in the tank, it can be installed next to the manhole flange. The probe should be as close to the manhole as possible. The calibration probe is installed at the equatorial position of the spherical tank.

7.3 Probe Installation and Debugging Procedures

7. 3. 1 Installation and Debugging of Measuring Probe

• Polishing Tank Wall Surface

After selecting the installation position of the probe (removing the protective material of the tank at the installation), the surface of the tank wall is polished and cleaned with sandpaper. It is required to polish a circular surface not less than the diameter of the probe base. The surface should be smooth and smooth, free of oil pollution and fine particles.

As shown in step 1:

Step 1 :Sandpaper polishing tank wall

Silicone grease

Remove the probe from the probe base and apply a layer of silicone grease (1-2mm thick) evenly on the front surface of the probe and on the polishing surface of the tank wall. As show in step 2

Step 2:Remove probe and apply silicone grease

Installation of Measuring Probe
The probe is attached to the smooth area after polishing, then the probe is pressed by force and rotated slowly.

As show in step 3:

Step 3 The probe is close to the wall of the tank

Probe falling to the ground may cause permanent damage, we must do a good job of protection measures.

Silicone grease can make the probe directly adsorbed on the tank wall. In order to prevent the falling of the probe, it can be gently held by the hand, or the probe line of the probe side should be temporarily fixed at the installation site to prevent the probe from falling to the ground. If the probe installation position is very low, soft foam foam can be placed underneath it, so as to avoid the probe falling directly to the ground.

Wires Connection

DC 24V power supply is connected to "24V" orange terminal, measurement probe is connected to "MEA" terminal (when composite probe is connected to red single-core shielding wire), core wire is positive, shielding layer is negative, do not reverse. The terminal is shown in figure 3.

• Probe Base Installation

After confirming that the quality of the echo waveform meets the requirements, the fixed seat of the probe is slowly moved upward on the outside of the probe and gently adsorbed on the tank wall; the probe should not be touched during the adsorption process.

As shown in step 4:

Step 4 install probe base

For the non-ferromagnetic tank wall, the probe base can be installed by adding adapters, and the ferromagnetic adapter can be bonded to the tank wall. After the glue solidifies completely, the probe base can be adsorbed on the adapter.

As shown in step 5:

Step 5 Install adapter board and apply quick-drying glue

Figure 6 installation of liquid level switch

Note: The installation and laying methods of spherical tank, horizontal tank and vertical tank can be shown with reference to figure 6.

Attention:

When threading, pay attention to protecting the probe. Do not force or move the probe.

Take care to protect the cables. Do not scratch or cut them.

8. Instrument Debugging Parameter Description

8.1 Parameter setting man-machine interface

The instrument uses infrared remote controller to set parameters. The key functions are as follows:

Figure 4 IR Controller Key Description

1. Reset/restart: ; reset or restart the instrument;

2. Menu: Open the menu, check and change the working parameters.

3. Test: Display real-time echo wave and parameters of the instrument and assist in debugging and diagnosis.

4. Backspace: Under the menu or waveform interface, return to the main working interface.

5, All of the other button are used to edit the con-figs

8.2 Main Screen Description

1 **P** 485 is proprietary protocol

M 485 is Modbus protocol

② **C** Working mode C

③ Instrument is disturbed by outside and reset automatically

(4) A Means safe status, and indicates as Normal A Means alarmed status, and indicates as Alarmed.

⑤ R Infrared function of the system is disturbed and prohibited.

A: The output status of point A is displayed. The list of valid states is as follows.

(6) Fluctuation: The instrument works normally and the liquid level has reached the alarm point

⑦ Closed: Instrument works without Base Para of High/Low Alarm Thresholds, need to set its up first.

Statement	Explanation		
Normal	The instrument works normally and is in an unannounced state.		
Alarm	The alarm instrument works normally and is in the alarm state.		
Fluctuatio	The instrument works normally and the liquid level has		
n	reached the alarm point		
Turn off	The instrument works normally and point A is closed.		
Failure	Failure of instrument calibration, failure of normal operation and invalid output result		
Exceptions	system abnormalities, can not work properly, the output results are invalid		
Unknown	Unknown state, instrument can not work properly		

- D: System delay
- S: Key System Parameters
- E: Key System Parameters
- G: Key System Parameters

8.3 Instrument operation

8. 3. 1 Working Characteristics of Mode C

C mode operation requires one probe, and can monitor one level point. The installation point is same as the monitor point

8.3.2 Main Parameters Setting

a) Connect the instrument on power or battery.

b) Press MENU \rightarrow C Mode \rightarrow *C Mode, shows OK!

c) Back to Mode \rightarrow C Mode

d) Chose the High/Low Alarm Threshold \rightarrow input diameters, unit is millimeter \rightarrow OK!

d) Back to DEVICE INFO and enter \rightarrow CHECK PWD \rightarrow input 6666666 \rightarrow CORRECT PWD OK!

e) Press MENU \rightarrow SYSTEM BASIC \rightarrow DEFAULT SPEED(VSONIC) \rightarrow input vsonic of medium, unit is $M/S \rightarrow OK!$

f) Enter MEASURE RANGE \rightarrow input number=diameter \times 1.3, unit is millimeter \rightarrow OK!

g) Press MENU \rightarrow MAIN SENSOR BSC \rightarrow FREQUENCY \rightarrow input the best frequency (to find the best echo), generally, the Frequency range should be from 100kHz to 300kHz. You may repeat this procedure several times \rightarrow OK!

h) Press MENU \rightarrow DIAGNOSIS \rightarrow SIGNAL SMOOTH \rightarrow input a number between 100 to 1000 (the bigger number means more smooth curve; the bigger tank needs bigger number) \rightarrow OK! A good waveform with good echo and smooth curve may be like

And the main screen after para setting should be like this:

8.3.3 Main Parameters Descriptions (the other paras no shown on this

Parameters		Descriptions	Functions	Modification Suggestions
Menu	C MODE	Level switch works as C mode	/	
	The actualmeasure range oftheSetting this para whenhigh Alarmprobe. (basicallyinstall the probe on thesame as thehigh position to monitor thtank'sdiameters)Unit:MMThe actualmeasure range oftheSetting this para when	Setting this para when install the probe on the high position to monitor the high level alarm. Setting this para when	Modify every time	
	A Low Alarm Threshold	probe. (basically same as the tank's diameters) Unit:MM	install the probe on the low position to monitor the low level alarm.	Modify every time
	Lower Threshold	The lower limit of the effective range of the echo.The default is 6.	The echo distance should be above (diameter*6/10),otherwise the echo is useless.	No modification recommended

	Higher Threshold	The lower limit of the effective range of the echo.The default is 14.	The echo distance should be above (diameter*14/10),otherwise the echo is useless.	No modification recommended
DEVICE INFO	EVICE NFO CHECK PWD Advanced paras setting			
MAIN SENSOR BSC	FREQUENCY	The working frequency of level switch's probe.	Base on the different working condition, choosing the most suitable frequency.	Modify every time
	GAIN TYPE-AGC (adv) 2	Echo signal intensity auto adjustment mode	Automatically adjust signal strength according to echo strength	Cannot be modified
MAIN SENSOR ADV	POWER LEVEL	Transmitted signal strength level.	The more complicated the working condition is, the larger the power range is (the minimum value is 1, the maximum and default value is 4)	No modification recommended
	DEFAULT SPEED	VSONIC of medium	Input according to medium type, for example: water 1485m /s, propane 800m /s	Modify every time
SYSTEM BASIC	MEASURE RANGE	The maximum measuring distance of the probe, the input value is equal to 1.3 times of the tank's diameter	Set the maximum measuring distance of the probe	Modify every time

	FILTER LENTH	Damping time, default value is 200.	The larger the filter length, the slower the alarm response and the more stable the function, and vice versa.	No modification recommended
SYSTEM ADV	LEVEL STRAGEDY	Default: display DEAD 0	/	Cannot be modified
	SIGNAL SMOOTH	Smoothness of waveform	The larger the input value, the smoother and more stable the waveform, but the larger the blind area. vice versa.	Modify every time
DIAGNOSIS	SYSTEM DAMP COEF	Same as "FILTER LENTH"	/	Cannot be modified
	VIEW LAST ERROR	For checking the latest error	Engineer can use this para to check the latest error waveform	/
	CLEAR LAST ERROR	For deleting the latest error	Engineer can use this para to delete the latest error	/

9. Electrical connection

9.1 Level Switching Power Supply

Rated operating voltage: DC 24V Voltage allowable range: DC, [20, 28] V Rated power: 3W

9.2 Terminal of Level Switch

Terminal Name	Functions	
24V (+)	24V power +	
24V (-)	24V power -	
RS485 (A)	RS485Communication A Terminal	
RS485 (B)	RS485Communication B Terminal	
RS485 (G)) RS485 Communications Place	
T/R (+) Emission probe connection terminal		
T/R (-)	Emission probe connection terminal-	
RCV (+)	Receiving probe connection terminal+	
RCV (-)	Receiving probe connection terminal-	
RLY_A (NC)	A-Point Relay Usually Closed End	
RLY_A (CM)	A-point relay common end	
RLY_A (NO)	A-point relay often starts	

	Normal Closed End of Instrument Fault Output
RLY_FB (NC)	Relay
RLY_FB (CM)	Common End of Instrument Fault Output Relay
RLY_FB (NO)	Instrument fault output relay often starts
CTRL (+)	External control terminal+
CTRL (-)	External control terminal-

10. Appendix 1

Explaination of ModBus Protocol for External Layer Switch

1: Read parameters, using command 0x04

Register List:

Register Address	Register Description	Data Type	Note
0001H	A relay	16-bit unsigned integer (0-65535)	0 represents no alarm, non-zero represents alarm
0002H	B relay	16-bit unsigned integer (0-65535)	0 represents no alarm, non-zero represents alarm

2: Read or set parameters, read using 0x03 command, set using 0x10 command Register List:

Register Address	Register Description	Data Type	Note
0003H	Damping	16-bit unsigned integers	
0004H	Baud rate	16-bit unsigned integers	bps
0005H	Range	16-bit unsigned integers	The unit is mm [10,50000]

备注: 1、The default address of the device is 1 and the initial baud rate is 9600. 2、The device address and initial baud rate can be modified through the instrument menu. Shaanxi ShengKe Electronic Technology Co.,Ltd

Web http://www.sx-sk.com

http://www.skgauge.com

Tel 029-88858601

Fax 029-88858601

Email market@skgauge.com

Post code 710065

Address Room 31902, Yicuishangfu Building, Jinye 2nd Road, Gaoxin Zone, Xi'an City, Shaanxi.China